Navier-stokes Equations in the Half-space in Variable Exponent Spaces of Clifford-valued Functions
نویسندگان
چکیده
In this article, we study the steady generalized Navier-Stokes equations in a half-space in the setting of variable exponent spaces. We first establish variable exponent spaces of Clifford-valued functions in a half-space. Then, using this operator theory together with the contraction mapping principle, we obtain the existence and uniqueness of solutions to the stationary Navier-Stokes equations and Navier-Stokes equations with heat conduction in a half-space under suitable hypotheses.
منابع مشابه
Weak Solutions for A-dirac Equations with Variable Growth in Clifford Analysis
In this article we show the existence of weak solutions for obstacle problems for A-Dirac equations with variable growth in the setting of variable exponent spaces of Clifford-valued functions. We also obtain the existence of weak solutions to the scalar part of A-Dirac equations in space W 1,p(x) 0 (Ω,C`n).
متن کاملSome Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations
Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in the unit ball of the Hilbert space. ...
متن کاملSome functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is$$int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleqCint_0^infty f(x)^{p(x)}u(x)dx,$$ is studied. We show that the exponent $p(.)$ for which these modular ine...
متن کاملWell-posedness and Regularity of Generalized Navier-stokes Equations in Some Critical Q−spaces
We study the well-posedness and regularity of the generalized Navier-Stokes equations with initial data in a new critical space Q α;∞ (R ) = ∇ · (Qα(R )), β ∈ ( 1 2 , 1) which is larger than some known critical homogeneous Besov spaces. Here Qα(R ) is a space defined as the set of all measurable functions with sup(l(I)) Z
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کامل